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Separation of variables

In some cases� you can solve a di�erential equation

f �x� y� y�	 
 �

by moving all the x�s to one side and the y�s to the other
 Then solve the equation by integrating both sides

This is called separation of variables
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Observe that there is one integration step� hence only one constant

Note also that in the last line I replaced �C with C�
 It would not be wrong to write �C� but this is

neater
 You can always rename constant quantities to make the result look nicer

Finally� the problem did not include an initial condition� hence� I�ve stopped at y�� rather than taking

square roots
 Without an initial condition� I can�t tell which square root to take


Example� �Exponential growth or decay� Let a be a constant
 The exponential growth or decay
equation describes a situation in which a variable grows or shrinks at a rate proportional to the amount
present�
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Integrate and solve for y�

ln jyj 
 ax� C� jyj 
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�I�ve replaced �eC with C�
	 If a � �� then y increases as x increases� exponential growth
 If a � ��
then y decreases as x decreases� exponential decay


Example� �Logistic growth� In the real world� things cannot grow without bound
 In many cases� there is
a natural limit to the ability of an environment to support the growth of a population
 For example� there
are always limits to the food supply and space
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In many cases� this situation is modelled by the logistic equation
 Let a be a constant
 The logistic
equation is
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Compute the integral on the left by partial fractions�
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Back to the integration� Z �
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Now solve for N in terms of t�
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 Thus� K is the limiting population
 It is often called the carrying capacity�

the largest population that the environment can support


Example� �Dropping solutions� Consider the equation
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Integrate and solve for y�
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All of this looks routine
 However� note that y 
 �� is a solution to the original equation�
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You can see the solution y 
 �� as a horizontal line in the direction �eld below�

However� you can�t obtain y 
 �� from y 
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Two points emerge from this


�
 You can often drop solutions by performing certain algebraic operations �in this case� division	


�
 You don�t always get every solution to a di�erential equation by assigning values to the arbitrary
constants


Example� �Equations of the form y� 
 f�ax � by � c	� A standard rule of thumb is to substitute for an
expression which appears �a lot� in an equation or expression
 A di�erential equation

y� 
 f�ax � by � c	

can be reduced to a separable equation by the substitution v 
 ax� by � c
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Consider the equation y� 
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